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Abstract. We study the elasticity and failure characteristics of a system built by ‘association 
in parallel’ of links with identical spring constant but random failure thresholds. The 
occurrence of the first link rupture, which is related to the theory of extreme order statistics, 
is contrasted with the global failure for which a central limit theorem holds. We also 
discuss the similarities and differences between the ‘democratic’ and ‘hierarchical’ models 
which differ in the mechanism by which the stress supported by links which have failed 
is transferred to the other stronger links. This problem gives the simplest model of elastic 
non-linear behaviour before global rupture occurs. 

Failure is often associated with the statistics of extremes (Gumpel 1958, Galambos 
1978, Jayatilaka 1979): the weakest part of a system submitted to a given load fails 
first and this may sometimes trigger a macroscopic failure. The paradigm of this regime 
is the model of links with randomly distributed failure thresholds associated in series 
(Jayatilaka 1979). 

Most physical or mechanical systems are more complex and one must consider 
models where several links share the total load. Consider for example a Euclidean 
lattice of Ld bonds with randomly distributed failure thresholds and suppose that the 
stress is applied along the z direction. In this case, both parallel and series association 
are involved in a complex mixed way. Determining the global rupture properties 
constitutes an extremely difficult problem since it involves non-local long-range screen- 
ing and enhancement effects as well as connectivity effects which cannot be described 
easily by perturbative or probabilistic approaches. The status of the Euclidean lattices 
which are obtained by associating bonds both in series and in parallel is not addressed 
here and remains a challenge (see De Arcangelis et al(l988) for numerical work giving 
some insight into this problem (Sornette 1989)). 

Let us consider the following simplified version of the problem. Consider n 
independent parallel vertical lines with identical spring constant K - ~  but random failure 
thresholds X j , j  = 1, .  . . , n. Furthermore, suppose that a total stress S is applied to the 
system. Depending on the way in which the total stress S is shared among the n links, 
we obtain different problems. We will consider the simplest case of a ‘democratic’ 
distribution: we suppose that each of the n links supports a fraction S / n  of the whole 
applied stress S. Note that the problem is posed in similar terms in the electrical or 
mechanical context with the correspondence (Gilabert et al 1987) of spring constant 
to link conductance, mechanical stress to electric current density, and mechanical 
strain to electric voltage. In the following, we use the mechanical language. This 
problem, to our knowledge, was first discussed by Daniels (1945). It can model a 
variety of systems such as cables or ropes made of numerous fibres, geological faults 
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which are locked by asperity barriers sharing the total stress (Smalley et a1 1985, 
Turcotte et al 1985), electric networks, etc. 

The purpose of this letter is to discuss the mechanical and failure characteristic of 
the type of system built by association of links in parallel: We will see that the rupture 
properties of these systems are very different from those of systems of links associated 
in series (Coleman 1958, Galambos 1978). A second goal of this work is to improve 
the treatment of the failure threshold presented by Smalley et al (1985), which relied 
on an approximate hierarchical mechanism for stress transfer (see below) (see also 
Rosen (1964) and Suemasu (1984) for preliminary comparison between democratic 
and hierarchic models). This hypothesis is not in general justifiable but was made for 
the purpose of solving the problem. It turns out that a central limit theorem exists in 
the case where the stress transfer mechanism is ‘democratic’ and that no simplifying 
assumption is needed. 

We find the following results. 
(i)  The system is elastic and reversible in the range 0 C S S S, where S ,  is the stress 

threshold at which the first link failure occurs. S, is described by the theory of extreme 
order statistics and in general decreases to zero as n increases to infinity. 

(ii) For S ,  c S c S,, where S, is the global failure threshold, the system exhibits a 
non-linear elastic behaviour. After deloading, the system comes back to the origin, 
i.e. to the unstrained state. This regime is similar to the behaviour of a brittle system 
with a single crack which propagates under imposed displacement. S, can be shown 
to be described by a central limit theorem and scales as S, - n. 

(iii) For S >  S, ,  global failure occurs. 
In the following, we summarise the central limit theorem, explore its consequences 

and compare them with the results obtained within the hierarchical assumption of 
Smalley et a1 (1985). 

Let us denote the strengths of the individual links by X , ,  X z ,  . . . , X , ,  and suppose 
that they are independent identically distributed random variables with the cumulative 
probability distribution P ( X j  < x) = F ( x ) .  Furthermore, assume that the total load S 
is distributed equally on the individual links. Under a total load S, a fraction F (  S /  n )  
of the threads will be submitted to more than their rated strength and will fail 
immediately. After this first step, the total load will be redistributed by the transfer 
of stress from the broken links to the other unbroken links. This transfer will in general 
induce secondary failures which in turn induce tertiary ruptures, and so on. The 
problem consists of describing this cascade of induced failure. An important question 
is: does this cascade stop or propagate until the whole sample is broken? The answer 
depends on the way the total stress is redistributed over the remaining links. One has 
therefore to face an intricate n-body non-linear problem. This problem has been solved 
by Smalley et a1 (1985) in the approximation that the stress transfer was restricted to 
the adjacent link inside the same cell in a hierarchical lattice. When both links of a 
cell have failed, the total stress on these two links was transferred to the cell belonging 
to the next stage of the hierarchical tree. We will compare the result of this ‘hierarchical’ 
model to the ‘democratic’ model which is now discussed. 

Consider the other limit for the propagation of the failure among the n links or, 
in other words, for the successive transfer of stress: when a thread fails, the stress on 
the failed link is supposed to be transferred ‘democratically’ to the other links. This 
problem seems much more difficult than the hierarchical model but it turns out that 
it can be solved using the theory of extreme order statistics (Galambos 1978). An 
heuristic derivation can be also found in Coleman (1958). The clue to the solution is 
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that, evidently, the bundle will not break under a load S if there are k links in the 
bundle, each of which can withstand S/k. In other words, if XI;,, s X2;,, 6.. . S Xnin 
are the ordered strengths of the individual links, then if we remove the first k - 1  
weakest links, the bundle will resist under a stress less than or equal to ( n  - k +  l)Xk,,, 
since there remain ( n  - k +  1) links of breaking strength greater than or equal to &,,e 
Then, the strength S,, of the bundle is given by 

S,, = max{ ( n - k + 1)Xkin : 1 S k n}. (1) 
We are not looking for the weakest link out of the n links (as in the case of links 
associated in series or for determining the occurrence of the weakest link failure) but 
are searching for the strongest subgroup. The variables x k ; , ,  are strongly dependent 
since they are ordered. The probabilistic description of S,, which is a partial sum of 
correlated random variables may thus be expected to be difficult. However, a very 
general result holds for S,, independent of the specific distribution F ( x ) .  The result 
we will use throughout this letter has been derived by Galambos (1978) and is now 
summarised by the following theorem. 

Theorem (Galambos 1978). Let F ( x )  be absolutely continuous with finite second 
moment. Assume that x( 1 - F ( x ) )  has a unique maximum at x = xo> 0 and let 6 = 

x,(l - F ( x , ) ) .  If, in a neighbourhood of xo, F ( x )  has a positive continuous second 
derivative, then as n + f c o  

lim P (  S,, < ne + x d n )  = (2v)-'l2 
n + m  

It is remarkable that the asymptotic properties of the global failure threshold of 
the bundle can be reduced to the so-called central limit problem. Expression ( 2 )  
implies that the probability that the global failure threshold S,, be equal to S is 

P ( S ,  = ~ ) - ( 2 r r n x , ) - ' / ~ e x p [ - ( ~ - n e ) * / 2 n x ~ l .  (3) 
The density distribution of the global failure threshold is normally distributed around 
the maximum S = ne with a dispersion scaling as dn. This means that the typical 
strength of the total system increases as S,, - n, for large n. One could argue that this 
result could be expected rather trivially on the basis of the independence of the random 
failure threshold for each parallel link. Indeed, from a naive argument, one would 
predict that the global failure threshold should scale as S,, = n ( x )  where (x) is the 
average one-link failure threshold. In fact, (3) shows that S,, = ne with 8 significantly 
smaller than (x). To illustrate this point, let us consider the usual Weibull distribution 
(Jayatilaka 1979) for the failure threshold of each individual link 

F ( x )  = 1 -exp[-(x/A)"']. (4) 
We easily obtain 

which are weakly dependent upon the order m of the Weibull distribution. For m = 2,  
one finds B / A  =0.429. This value must be contrasted with (x)/A =0.886 which is 
obtained from (4) for the same value m = 2. Therefore, the naive argument strongly 
overestimates the global failure threshold. By crudely using it, one forgets the intricate 
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non-linear stress transfer mechanism which is very sensitive to the failure threshold 
fluctuations. 

It is worth pointing out that the scaling of S, is very different from the scaling of 
the weakest link strength 

S,/A - n-‘I” (7) 
obtained for the Weibull distribution (4) (Sornette 1988). 

The mechanical characteristics of a system under a given applied stress S < S, 
depend upon the history of the stress, i.e. on the number of links which have failed 
as the stress was increased from zero to S. It is easy to show, using the method of 
Galambos (1978) that, in the limit of large n, the number of links which have failed 
under S is 

k ( S )  = n F ( x ( S ) )  (8) 

S / n  = x(S) ( l -  F ( x ( S ) ) .  (9) 

where x ( S )  is defined by 

The number of remaining links is therefore n ( 1 -  F ( x ( S ) ) )  = S/x(S). 

value of S < S,, we can associate an integer p ( S )  with 1 s p ( S )  s n such that 
Equations (8) and (9) can be inferred from the following reasoning. With each 

( n  - p ( S )  + 2)xp-1;, s s s ( n  - p ( S )  + 1)Xp;, 

[ I -  ( p ( S )  -2)/n1Xp-1;, s S / n  6 [1 - ( A S )  - l) /nlxp;, .  

which can be rewritten as 

(10) 
Here p ( S )  - 2  is the number of links which have failed under a stress less than or equal 
to S/(n-p(S)+2).  We have also, by definition of F ( x ) ,  

( p  - 2)/n s F ( S / (  n - p ( S )  + 2 ) )  s ( p  - l ) / n .  (11) 
Expression (1 1)  follows from the fact that, for large n, counting the number of links 
with failure threshold less than S/  ( n  - p (  S )  + 2) amounts to computing the cumulative 
failure distribution F ( x )  at x = S / ( n  - p ( S )  + 2 ) .  Roughly speaking, expression (11) 
with (10) shows that, as n increases to infinity, S / n  is better and better approximated 
by x(l  - F ( x ) )  with x given by (9). Using the method of Galambos (1978), it is then 
easy to make this argument rigorous by following step by step the demonstration of 
(2). Note that (9) is a continuous function in the limit n++co. For large but finite 
n, S(x) or x(S) is a staircase with plateaux of width decreasing to zero as n -+ +W. 

For a given S interval, the width of each plateau can be obtained from (10) as the 
interval in S such that (10) holds with the same integer p (  S) = p .  

Just before complete failure of the bundle, the total number of broken links, as 
obtained from (8) and (9), is 

Therefore, a finite fraction of the links fail before global rupture occurs. For the 
Weibull distribution (4), the fraction k , / n  of broken links just before global failure is 

k, = k(S , )  = nF(xo). (12) 

k , / n  = 1 -exp(-l/m). (13) 
For m = 2, this gives k,/  n = 0.393. 

For S s  S,, x(S) is in the neighbourhood of xo and can be expressed in the form 
x ( S )  - x O =  -A( 6 - S/n)”* (14) 

where A is a coefficient which depends upon the cumulative distribution F(x). For 
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the Weibull distribution (4), A = [xo e ~ p ( l / m ) / m ] ' / ~ .  The number of links which have 
failed under the stress S is obtained from the asymptotic form of (8) with (14): 

with B = (mxo)-1'2 exp(-1/2m) for the Weibull distribution (4). As depicted in figure 
1, expression (15) shows a very rapid increase of the number of broken links as S + S,  
for which k ( S )  tends to n ( F ( x o )  with a square-root singularity. 

k ( S ) / n  = F(x0)  - B ( 8  - S / n ) ' / '  (15) 

SI 5" s 

Figure 1. Fraction of links k ( S ) / n  which have failed under a stress less than or equal to 
S. Note the zero slope of k ( S ) / n  at S = SI and the infinite slope at S = S, .  

Note that under the limiting stress S, ,  a fraction F ( S , / n  = 8) of the links immedi- 
ately breaks down and, due to stress transfer, other links break in cascade until a total 
fraction F ( x , )  of broken links is reached. From (5) and (6), one has F ( x , ) =  
1-exp(-l/m) and F(O)=l-exp(-e- ' /m).  For m = 2 ,  a fraction F(8)=0.168 of 
links fail immediately under S,  but the cascade of stress transfer to the other links 
results in a total fraction F(xo)  = 0.393 of broken links. 

We can also predict the strain(&)-stress(a) characteristic of the bundle of threads. 
Suppose that each individual link has a linear characteristic E = KU until its failure 
(brittle systems). 

For S S  S ,  (--An-'" for the Weibull distribution (4)), all links are intact and the 
system has a linear stress-strain characteristic with slope K - ' .  

For S ,  s S s S, ,  some links have failed and the system is elastic non-linear as we 
now show. From (8), n(1- F ( x ( S ) ) )  links support the total stress S. Therefore, the 
stress per remaining link is given by 

a = S/n(l  - F ( x ( S ) ) )  = x(S) (16) 
where we have used (9). Note that (16) gives an intuitive physical meaning to x(S). 
To a there corresponds a strain per link (equal to the strain of the total bundle of 
links associated in parallel) equal to 

From (14) with (17), we predict a (E, a)  characteristic which becomes flat with zero 
slope as one approaches the global failure threshold S + S,  as shown in figure 2. The 
apparent elastic modulus therefore decreases as S increases. Intuitively, this non-linear 
behaviour stems from the fact that as S tends to S,, more and more links fail and as 
a consequence the whole stress is supported by fewer and fewer links. This non-linear 
transfer of the stress to fewer and fewer links is the basic mechanism for the non-linearity 
of the ( E ,  r) characteristic. This argument is reminiscent (although opposed in the 
conclusion) to the apparent increase of the elastic modulus of a granular array of 
inhomogeneous grains under pressure (Roux et a1 1987). In this case, increasing the 

E = K X ( S ) .  (17) 
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KXO E E 

Figure 2. ( a )  Stress-strain characteristic of the bundle of n links with identical spring 
constant K - ’  but random failure thresholds. ( b )  Magnified view of the apparent smooth 
characteristic represented in figure 2 ( a ) .  Note that the curve is obtained under an applied 
stress. The horizontal segments correspond to the rupture of a single bond. Note that 
each linear tilted portion of the characteristic, which represents a period with no failure, 
goes through the origin. 

applied stress results in an increase in the number of active contacts and thus to an 
increase of the apparent elastic modulus. 

We note that this non-linear behaviour of the ( E ,  a) curve is characteristic of an 
irreversible system. This corresponds indeed to the finite and irreversible deterioration 
of the bundle as S increases towards S, .  

Let us now summarise the above results and compare the ‘democratic’ model and 
the ‘hierarchical’ model studied by Smalley et a1 (1985) by pointing out the analogues 
and differences. 

Nature of the global 
failure collapse 

Threshold value F* of the 
failure distribution at 
failure collapse for m = 2: 
this is also the fraction of 
links with strength less 
than S,, 

Number k ( S ) ,  of broken 
links as F +  F* 

Susceptibility of the failure 
precursors which are 
supposed to be 
proportional to k ( S )  

Hierarchical model Democratic model 

Continuous or ‘critical’ 
transition transition 

0.206 

Abrupt or ‘first-order’ 

F* = F ( 8 )  = 0.168 

k( S )  - ( F *  - F)-” 
x f ( n ( F* - F )  ” ) 

with f ( x )  = x for x + 0; 
therefore, k( S )  = n for 
F = F*,  
v = 1.439 ( d  = 1) 
v = 0.808 ( d  = 2) 

Power-law divergence 

k ( S )  + nF(x0) 
(see equation (7)) 

= 0.393n for m = 2 

Finite but rapid increase 
with a square-root 
singularity near F* 

In spite of the difference in natures of the collapse transitions, the two models 
present similar behaviours: (i)  there is a rapid increase of the number of broken bonds 
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as the collapse transition is approached; (ii) the threshold value F* = 0.168 of the 
failure distribution at failure is much smaller than the value 1 - e~p[-(0.886)~] = 0.544 
which corresponds to the mean strength of the links (x) = 0.886h (values given for the 
Weibull distribution with m = 2). This means that below the collapse load threshold, 
very few precursory failures have occurred. This is in agreement with observation in 
the geophysical context (Turcotte et a1 1985). 

The problem of the rupture of a system built by ‘association of links in parallel’ 
can be analysed within the theory of extreme order statistics. The main surprising 
ingredient underlying the whole discussion presented in this letter is the validity of a 
central limit theorem for the global failure threshold. This approach is instructive 
since it gives another point of view and a powerful analytical method as an alternative 
to the naive intuitive non-linear transfer cascade approach which has been solved only 
for hierarchical systems (Smalley et al 1985). In this letter, we have used these results 
in order to extract statistical quantities such as the number of broken bonds under a 
given load as well as the form of the stress-strain non-linear characteristic. The 
‘democratic’ model is also instructive in comparison with the ‘hierarchical’ model. 

In order to be able to distinguish between the ‘democratic’ and the ‘hierarchical’ 
models, for example in the geological context of faults stabilised by asperities, one 
will need precise data on the behaviour of precursors in order to distinguish between 
(15 )  and a critical singularity of the form k ( S )  - (F” - F ) - ”  derived in Smalley et al 
(1985). Note that the continuous nature of the collapse transition in the hierarchical 
model is deeply related to the built-in self-similar hierarchical structure and may not 
be relevant in most real situations. The comparison between the two models cautions 
against the validity of the results obtained with simplifications such as the hierarchical 
stress transfer mechanism. Finally, this problem gives the simplest model of non-linear 
behaviour before global rupture occurs. 

In a forthcoming work (Sornette 1989) which can be considered as a sequel to the 
present letter, exact extended results on a class of hierarchical systems are discussed 
within a real space renormalisation group (RG). An approximate RG is also proposed 
to treat the case of two- and three-dimensional Euclidean systems. 

Future extensions also concern models of composite materials made of parallel 
fibres immersed in a matrix along the lines of Harlow and Phoenix (1981, 1982) and 
Kuo and Phoenix (1987). Here, the analysis is also based on the ‘chain-of-bundles’ 
model but with local load sharing assumed for the non-failed fibres in a bundle. These 
authors obtain bounds for the probability distribution of strength which rely on the 
occurrence of k or more adjacent broken fibres in a bundle. It would be desirable to 
have the analogue of a central limit theorem or a renormalisation group for this problem 
since it is the one which is present in practice in fibre composites. We hope to return 
to this question in a future publication. 

I am grateful to A Gilabert, E Guyon, D Rouby and C Vanneste for useful comments 
on the manuscript and S Redner for an instructive mail correspondence. 
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